
NAS Technical Report: TN-2014-01 
 

Comparison of 40G RDMA and Traditional Ethernet Technologies 
Nichole Boscia, Harjot S. Sidhu1 

NASA Advanced Supercomputing Division 
NASA Ames Research Center 
Moffett Field, CA 94035-1000 
Nichole.K.Boscia@nasa.gov  

Harjot.S.Sidhu@nasa.gov 
 

 
 

I.	  Introduction	  
In the world of computer networking, Ethernet has long been the standard for local connectivity. It is 
highly manageable, versatile, and supported by every industry vendor. Over the years, Ethernet speed 
has increased from 10 megabits per second (Mbps) to 100 gigabits per second (Gbps) and researchers 
are already planning to scale up to 1 terabits per second (Tbps). While servers with 10 gigabit Ethernet 
(10 GbE) network interfaces have been around for many years, the capability to have a single file 
transfer saturate a link is becoming more common due to more efficient processors, a faster PCI Express 
(PCIe) bus, and more sophisticated transfer protocols. Centralized services, such as backup servers, 
often need to handle parallel data transfers contending for bandwidth. As 10 GbE is becoming an 
inexpensive commodity with a growing installation base, there is a need to deploy faster technologies to 
accommodate the aggregation of those flows. In a supercomputing environment where systems are 
capable of processing large data sets at a high-speed rate, 40 Gb Ethernet (40 GbE) can reduce overall 
transfer times from days to hours. 

As the number of data-traversing networks grows, network capabilities must continue to scale with it.   

II.	  Converged	  vs.	  Traditional	  Ethernet	  
One of the desirable features associated with InfiniBand, another network fabric technology, is its 
Remote Direct Memory Access (RDMA) capability. RDMA allows for communication between systems 
but can bypass the overhead associated with the operating system kernel, so applications have reduced 
latency and much lower CPU utilization. This results in much faster network performance rates than 
traditional TCP/IP.  
Although InfiniBand has historically been the network technology used for RDMA applications because 
of the lossless fabric requirement, RDMA does not have all of the functionality that traditional socket-
based API (Application Programming Interface) provides and cannot detect when a frame or packet is 
dropped. Ethernet, however, relies on TCP to ensure that all data sent across the network arrives at its 
destination and retransmits data as required, and recent advances in priority queuing can now ensure a 
completely lossless Ethernet fabric. This capability allows other data center technologies such as Fibre 
Channel over Ethernet (FCoE) and InfiniBand/RDMA (RoCE) to converge over Ethernet.  

RoCE is picking up momentum in the networking industry by bridging the "best of both worlds" – 
organizations can continue to use their existing Ethernet infrastructure, yet still benefit from what 

                                                
1  Employees of CSC, Inc. through contract no. NNA07CA29C with NASA Ames 



NAS Technical Report: TN-2014-01 
 

RDMA has to offer. The improvement in performance is substantial, as we will show in the “Testing 
Results” section of this document. 

III.	  Setup	  and	  Configuration	  
This section provides a description of the test environment components used to evaluate the benefits and 
determine the optimal expected performance of using a 40 GbE Local Area Network (LAN) in a high-
end computing environment. 

Server	  Configuration	  

• Intel S2600IP4 Motherboard with PCIe 3.0 
• Two Intel Xeon E5-2667 “Sandy Bridge” Processors  
• 32 GB DDR3 1600Mhz dual inline memory modules (DIMM) 
• Four 1 TB, 7200 RPM, 64 MB SATA-II hard disk drives (HDD),  
• Mellanox 40GbE ConnectX-3 VPI Network Interface Cards (NIC) with firmware version 

2.11.500 
• CentOS 6.2 Linux OS 
• Mellanox OFED 2.0 driver version 

Demo	  Network	  Equipment	  

• Cisco Nexus 3016Q switch 
• Cisco QSFP-40G-SR4 Transceiver Module with MPO Connector 

 
The test environment contains two high-end servers equipped with Intel Sandy Bridge processors, 32 
GB of RAM, and Mellanox 40GbE Connect-X3 Network Interface Cards (NIC). Both servers run the 
CentOS 6.2 Linux operating system with Mellanox OFED 2.0 drivers. Standard 12-strand optical MTP 
cable was used with Cisco QSPF transceiver connectors to connect the servers to the Cisco Nexus 3016 
network switch, which is a high-performance, ultra-low-latency Ethernet switch. To achieve the rated 
speed of the Mellanox ConnectX-3 NIC, a PCIe Gen3 slot was used. Figure 1, below, shows a diagram 
of the test environment. 
 
Note: Gen3 slots are available on newer systems, such as those equipped with an Intel Romley 
motherboard. If an older system is used, the NIC will be limited by the speed of the older PCIe Gen2 
bus.   
 

 
 

Figure 1. Test environment diagram. 
 



NAS Technical Report: TN-2014-01 
 

IV.	  System	  Tuning	  
It is important to remember that the testing described in this document is intended explicitly for low-
latency LAN environments. Many of the modifications listed in this section will cause very poor results 
in wide-area network (WAN) environments. The bottleneck for a 40 GbE NIC is generally the CPU. 
While RDMA-based applications greatly reduce CPU utilization and can eliminate system interrupts, 
traditional Ethernet needs a lot of optimized tuning to accomplish the same results. Linux offers a 
variety of mechanisms to customize relevant settings, as shown in the following sections. 

NIC	  Offloading	  	  	  
Most NICs come with a variety of options for offloading tasks to the NIC itself. By default, all driver 
options are enabled, as shown in Table 1: 
 
Table 1. NIC Driver Offload Settings 

Offloading Type Default 

TCP Segmentation Offloading (TSO) On 

Rx Checksumming On 

Tx Checksumming On 

Large Receive Offload (LRO) On 

Scatter-Gatter (SG) On 

Generic Segmentation Offload (GRO) On 

Kernel	  Tuning	  	  	  

Disabling these parameters can help reduce CPU processing and overhead: 
 
sysctl -w net.ipv4.tcp_low_latency=1 
sysctl -w net.ipv4.tcp_timestamps=0 
sysctl -w net.ipv4.tcp_sack=0 
sysctl -w net.core.netdev_max_backlog=30000 

 

CPU	  Affinity	  

Associating the test software application with the same CPU as the NIC driver can provide a substantial 
performance improvement. To do this, you must first identify which interrupt request (IRQ) line is 
associated with your NIC by looking at the /proc/interrupts file. Then, enter the CPU you want in the  
/proc/irq/#/smp_affinity file, where # is the IRQ number associated with the NIC. Make sure the 
irqbalance service is not running. Finally, when the application is run you can use the taskset command 
to set the CPU affinity.2 
 

                                                
2 For more information on CPU affinity tuning, please see the guide at http://fasterdata.es.net/host-
tuning/interrupt-binding/ 
 



NAS Technical Report: TN-2014-01 
 

DMA	  Ring	  Buffer	  Sizes	  	  	  	  

The pre-set maximum is 8192 packets. The default is 256 packets. For purposes of LAN testing, using 
the smallest possible ring size provides the best results. 

Coalescing	  	  

Using interrupt coalescing is a trade-off between lower latency and reducing CPU overhead. By default, 
the adaptive interrupt moderation (adaptive-rx) feature is enabled. Not all drivers support this setting, 
however, so manual tuning should be done for each situation, based on the environment. Fortunately, the 
Mellanox NICs support the adaptive feature and dynamically optimize the settings for reach flow.  
The coalescing settings can be adjusted using the ethtool command. 

Process	  Priority	  	  	  

On a heavily used or multi-user system, it might be necessary to set a higher scheduling priority using a 
command such as nice.   

Note: The lower the nice value, the higher the priority of the process.   

New	  API	  (NAPI)	  	  	  

This newer, improved API for packet processing helps mitigate interrupts. NAPI is supported on newer 
Linux kernels (2.5+, generally) and requires driver code modification. For the Mellanox 40GbE NICs, 
NAPI is enabled by default. It can be disabled (or re-enabled) via driver compilation as a CFLAG 
setting. Please refer to your driver documentation for further information. 

TX	  Queue	  Length	  

This queue parameter is mostly applicable for high-speed WAN transfers. For low-latency networks, the 
default setting of 1000 is sufficient. The receiving end is configured with the sysctl setting 
net.core.netdev_max_backlog. The default for this setting is also 1000 and does not need to be modified 
unless there is significant latency. 

Firewalls	  	  	  

Firewall software programs such as iptables are built into the kernel and consume CPU resources. For 
the purpose of obtaining the highest performance rates during testing, the system firewalls are disabled 
on client and server. 

Pause	  Frames	  	  	  

A lossless fabric is a key requirement for RDMA testing. Priority Flow Control (PFC) can provide this 
through the use of pause frames. Ensure that pause frames are enabled on the system and on the switch 
by using the ethtool command. 
 

 
 

 



NAS Technical Report: TN-2014-01 
 

V.	  Testing	  Results	  
Our throughput testing was performed using a data-sink network application called nuttcp, which is an 
enhanced version of the well-known ttcp software. This application was chosen because it provides per-
interval metrics such as packet loss. It was also important to ensure that data was not read or written to 
the disk during the test, because that could become an additional performance bottleneck. The TCP 
protocol was used for metrics, as all data transfer applications use it as a transport protocol.   

With both RDMA and traditional Ethernet testing, we used 65KB packets and single-stream flows. 
Traditional Ethernet results varied slightly test to test, even when identical parameters were used. There 
was a deviation of around 300 Mbps between tests, which was a result of other system processes running 
in parallel with our tests. However, each test was run multiple times to ensure the results were 
consistent. Also, the system's route cache was flushed between each test to ensure no metrics or settings 
were caches, which can give false improvement rates. 

Offloading	  

Table 2. Performance Implications of Offloading Settings 

Offloading Type On - MTU 1500 On - MTU 9000 Off - MTU 1500 Off - MTU 9000 

TCP Segmentation 
Offloading (TSO)  

15100 Mbps 19100 Mbps 12900 Mbps 19000 Mbps 

Rx Checksumming 1 15100 Mbps 19100 Mbps 7500 Mbps 17300 Mbps 

Tx Checksumming 2 15100 Mbps 19100 Mbps 10000 Mbps 50 Mbps 

Large Receive Offload 
(LRO) 

15100 Mbps 19100 Mbps 13300 Mbps 18700 Mbps 

Scatter-Gatter (SG) 3 15100 Mbps 19100 Mbps 10300 Mbps 70 Mbps 

Generic Segmentation 
Offload (GRO) 

15100 Mbps 19100 Mbps 12800 Mbps 19100 Mbps 

Note: Standard deviation is +/- 300 Mbps.  
 
1. Changes to Rx Checksumming also include the same change to GRO. 
2. Changes to Tx Checksumming also include the same change to SG and TSO. 
3. Changes to SG also include the same change to TSO. 
 
Our results show that the offloading capabilities play a larger role with smaller frame size, as shown in 
Table 2. With jumbo frames, the changes were negligible except for the SG-related parameters. It is not 
known if the poor performance is related to 40 GbE or is an issue with the SG code itself. In the past, 
bugs have been noted with TSO and therefore it is generally recommended that it be disabled.  
The key meta parameters for 40 GbE tuning appear to be offloading Tx/Rx checksumming capabilities.  
With small maximum transmission units (MTUs), there are also many retransmits due to the extra 
overhead associated with the interrupts. 

 

	  



NAS Technical Report: TN-2014-01 
 

Kernel	  Tuning	  

For the kernel settings we tested to improve throughput on the high-speed LAN, only the timestamps 
setting improved performance by reducing CPU overhead.   

Note: If 40 GbE is used in a WAN environment, the kernel settings should be tuned to better be able to 
handle packet loss and larger window buffer sizes.  

Table 3. Performance Implications of Kernel Settings 

Kernel Setting Affect on performance 

tcp_low_latency=1 None 
tcp_timestamps=0 Improved performance 300-400 Mbps. 

tcp_sack=0 Negligible. 
netdev_max_backlog=30000 Negligible. 

CPU	  Affinity	  

For testing, CPU 0 was chosen for interrupt binding. Assigning the test software application to also use 
CPU 0 on the client and server yielded the best results. Testing was also done with IRQ balancing; as 
expected, this resulted in many packet retransmits. To further demonstrate the impact of binding, the 
application was set to run on different CPUs than CPU 0 (both client and server), using the nuttcp 
parameters -xcs# and -xc# for server/client CPU affinity settings. The results are shown in Table 4: 

Table 4. Performance Implications of CPU Affinity  

Client/Server CPU Rate Packet Loss (30 sec) 
0/0 18500 - 19500 Mbps  0 

2/2 11600 - 17400 Mbps 43447 
6/6 7100 - 7400 Mbps 15149 
13/13 12000 - 12200 Mbps 44891 
 
It is easy to monitor CPU usage and find the bottleneck by using the top command. Once top is running, 
press the "1" key to see an individual list of each CPU and its utilization. For example, when running 
nuttcp with CPU 0 affinity, top shows the following output: 
     (on server) 

Cpu0:  0.3%us, 49.7%sy,  0.0%ni,  0.0%id,  0.0%wa,  0.0%hi, 50.0%si,  0.0%st 
 
(on client) 
Cpu0:  0.9%us, 50.7%sy,  0.0%ni, 35.6%id,  0.0%wa,  0.0%hi, 12.9%si,  0.0%st 

In this case, the server on CPU 0 is at 100% utilization. Approximately half of the processing is soft 
interrupts (represented by "si") and the other half is used by the system ("sy"); a fraction is associated 
with userland space ("us"). The key to tuning in this scenario is to lower the IRQ interrupts so that more 
processing can be used by the system. 



NAS Technical Report: TN-2014-01 
 

DMA	  Ring	  Buffer	  Sizes	  

The number of packets held in the ring queue can further increase throughput rates, as shown in Table 5. 
The smaller the queue, the faster the packets are processed, and therefore the latency is lower.   
Note: in WAN environments, larger ring sizes are preferred to better shape and buffer the data flows 
with higher latency. 
Table 5. Performance Implications of DMA Ring Size 

Ring Size (Packets) Throughput 

16 21000 Mbps 
1024 18700 Mbps 
4096 18100 Mbps 
8192 18100 Mbps 

Coalescing	  

For the LAN testing environment, it is best to tune interrupt coalescing for reducing interrupts, since 
latency is already inherently low.  
Turning off the adaptive-tx and adaptive-rx features and manually setting higher rates for rx-frames and 
rx-usecs resulted in erratic results, as shown in Table 6. These settings are best managed using the 
adaptive technologies that dynamically adjust values to optimize tuning during a flow.   

Table 6. Performance Implications of Setting Interrupt Coalescing  

Adaptive-rx Adaptive-tx rx-usecs rx-frames Throughput 

On Off 16 88 21000 Mbps 

Off Off 16 88 110 Mbps 
On On 16 88 21000 Mbps 

Off On 16 88 112 Mbps 
 

Miscellaneous	  Tuning	  

Increasing the TX queue length of an interface had no noticeable results; because the testing was done 
between two hosts on a single switch, there was little need for a queue. As long as the TX queue length 
is set to the default of 1000, it is enough to handle the output queuing.   
 

 
 

 
 



NAS Technical Report: TN-2014-01 
 

VI.	  Conclusion	  
Systems today are capable of handling 40 Gb Ethernet with slight optimization tuning. While the best 
deployment scenario is to use RDMA-enabled applications, the industry still needs time to catch up to 
this scenario, as common software must be rewritten to support InfiniBand verbs with RoCE. Converged 
Ethernet, which unites the best parts of the HPC and commodity networks worlds, is therefore a long-
term path. It is currently very limited in use due to the expectation of a lossless fabric (although that is 
being addressed by new technologies such as Data Center Bridging and Priority Flow Control).  
Traditional 40 Gb Ethernet is still very much in the running to become the next-generation technology. 
Its simple upgrade path requires no software to be modified, and it can more than double the 
performance of existing 10 GbE products on a per-stream basis. While "out-of-the-box" settings provide 
acceptable transfer rates, some fine-tuning will allow you to achieve even better rates. In our tests, the 
following configuration changes provided the best improvements: 

• Disable TCP timestamps 
• Reduce the DMA Ring buffer to minimum 
• Disable iptables or any system-level firewall service 
• Interrupt coalescing: bind applications to the same CPU as interrupts 
• Ensure as much offloading to the NIC as possible: Checksumming, SG, and LRO are all critical 
• Jumbo frames are critical; the larger the frame size, the better 

The purpose of the settings listed above is simply to reduce CPU overhead and keep latency low. The 
overall performance of 40 GbE could be improved with the use of larger frame sizes. Generally, jumbo 
frames are supported at 9000 MTU. This support was introduced with gigabit Ethernet networking; now 
that the rates have increased 40x, however, the size of the jumbo frame itself has not. It would be 
encouraging to see vendors supporting jumbo frames of at least 64K MTU. Currently, there is no 
standardization on the size of large Ethernet frames, and that is hurting the industry's progression; each 
vendor supports different settings, which limits MTU size to the lowest common MTU end-to-end. 

The best-sustained rates achieved in our tests were 39 Gbps with RDMA software, and 21 Gbps with 
traditional Ethernet. At a sustained rate of 39 Gbps using RoCE, it is possible to transfer approximately 
420 TB of data in 24 hours. At a sustained rate of 21 Gbps using traditional Ethernet, it is possible to 
transfer 225 TB in 24 hours. 

Keep in mind that these tests are for pure network performance—in a production environment, there can 
be other limiting factors, such as the disk read/write speeds or contention for system resources. Ideally, 
40 GbE is best suited for two environments:    

• High-Performance Computing (HPC) with large data set transfers 
• Centralized services in data centers or campuses where 10 GbE systems aggregate data, such as 

backup or file servers 
 
While 40 GbE networking is the logical next step beyond 10 GbE, it imposes the same problems that 
were manifested by upgrading system NICs from 1 GbE to 10 GbE. Largely, this is due to various 
queuing and shallow buffer issues across the network—the system sends out data faster than the lower-
speed WAN links and older networking equipment can handle, causing excessive packet loss and rate 
drops. It is expected that the upgrade path to 40 GbE will further exasperate this known problem, 
therefore, 40 GbE system deployments should be carefully architected to avoid such hazards. In an 
optimal environment, 40 GbE will provide 2x to 4x performance increases over existing 10 GbE 
technology. 



NAS Technical Report: TN-2014-01 
 

VII.	  Appendix	  
Supporting data tests and their results are listed in this section. 

Appendix	  A	  –	  RDMA	  Test	  Results	  

Tests were run using the Mellanox OFED software package, using a simple bandwidth test with a packet 
default of 65K bytes. Note that no additional tuning was required, and the same results were achieved 
without having to assign CPUs or process priority. Rate was easily sustained. Although the CPU 
utilization reached 100%, the utilization was entirely in user space and there was no contention from 
interrupts, which is seen with traditional Ethernet. 

RDMA	  Test	  1	  	  
# ib_send_bw --run_infinitely  --report_gbits 10.1.1.2 
 
--------------------------------------------------------------------------------------- 
 
                    Send BW Test 
 
 Dual-port       : OFF  Device         : mlx4_0 
 Number of qps   : 1  Transport type : IB 
 Connection type : RC 
 TX depth        : 128 
 CQ Moderation   : 100 
 Mtu             : 4096B 
 Link type       : Ethernet 
 Gid index       : 0 
 Max inline data : 0B 
 rdma_cm QPs     : OFF 
 Data ex. method : Ethernet 
 
--------------------------------------------------------------------------------------- 
 
local address: LID 0000 QPN 0x004c PSN 0xa8431e 
GID: 254:128:00:00:00:00:00:00:02:02:201:255:254:51:18:240 
remote address: LID 0000 QPN 0x004b PSN 0x5edb12 
GID: 254:128:00:00:00:00:00:00:02:02:201:255:254:51:19:80 
 
--------------------------------------------------------------------------------------- 
 
 #bytes     #iterations    BW peak[Gb/sec]    BW average[Gb/sec]   MsgRate[Mpps] 
 
 65536      372712         0.00               39.08      0.074547 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372802         0.00               39.09      0.074565 
 65536      372605         0.00               39.07      0.074526 
 65536      372682         0.00               39.08      0.074541 
 65536      372808         0.00               39.09      0.074566 
 65536      372839         0.00               39.10      0.074573 
 65536      372838         0.00               39.10      0.074572 
 65536      372841         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372841         0.00               39.10      0.074573 
 65536      372841         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 



NAS Technical Report: TN-2014-01 
 

 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372841         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 65536      372842         0.00               39.10      0.074573 
 
 
 
Cpu4  :100.0%us,  0.0%sy,  0.0%ni,  0.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st 
 

RDMA	  Test	  2	  	  

Another RDMA test was run to determine the optimum packet size:  
 
# ib_send_bw -a --report_gbits 
 
--------------------------------------------------------------------------------------- 
 
                    Send BW Test 
 
 Dual-port       : OFF  Device         : mlx4_0 
 Number of qps   : 1  Transport type : IB 
 Connection type : RC 
 RX depth        : 512 
 CQ Moderation   : 100 
 Mtu             : 4096B 
 Link type       : Ethernet 
 Gid index       : 0 
 Max inline data : 0B 
 rdma_cm QPs     : OFF 



NAS Technical Report: TN-2014-01 
 

 Data ex. method : Ethernet 
--------------------------------------------------------------------------------------- 
 
 local address: LID 0000 QPN 0x0060 PSN 0xaabfb2 
 GID: 254:128:00:00:00:00:00:00:02:02:201:255:254:51:18:240 
 remote address: LID 0000 QPN 0x0061 PSN 0x43a77e 
 GID: 254:128:00:00:00:00:00:00:02:02:201:255:254:51:19:80 
 
--------------------------------------------------------------------------------------- 
 #bytes         #iterations    BW peak[Gb/sec]    BW average[Gb/sec]    MsgRate[Mpps] 
 
 2              1000            0.00              0.07         4.419106 
 4              1000            0.00            0.16         4.942357 
 8              1000            0.00              0.29         4.603339 
 16             1000            0.00              0.61         4.780794 
 32             1000            0.00              1.18         4.603163 
 64             1000            0.00              2.51        4.902224 
 128            1000            0.00              4.68        4.569052 
 256            1000            0.00             9.90        4.831632 
 512            1000            0.00           18.73     4.571882 
 1024           1000            0.00             29.74        3.630029 
 2048           1000            0.00            34.32        2.094550 
 4096           1000            0.00              36.71        1.120326 
 8192           1000            0.00            37.88        0.578001 
 16384          1000            0.00            38.18        0.291316 
 32768          1000            0.00            38.75        0.147832 
 65536          1000            0.00              38.94        0.074267 
 131072         1000            0.00              39.00        0.037195 
 262144         1000            0.00            39.05        0.018618 
 524288         1000            0.00            39.06        0.009313 
 1048576        1000            0.00             39.07        0.004657 
 2097152        1000            0.00              39.08        0.002329 
 4194304        1000            0.00             37.05        0.001104 

 
 
In the above output, it is clear that a threshold occurs, where increasing the packet size offers no 
additional throughput improvement. A packet between 64K and 128K offers the fastest and most 
consistent performance rates. 

Appendix	  B	  –	  Traditional	  Ethernet	  Test	  Results	  

To show how interrupt coalescing plays a crucial role in performance, in the following throughput test 
the application was set to use CPU 1 on both the client and server, while the interrupts were set to use 
CPU 0. 

Ethernet	  Test	  1	  	  
# ./nuttcp -v -xcs1 -xc1 -T30 10.1.1.2  
nuttcp-t: v7.1.6: socket  
nuttcp-t: buflen=65536, nstream=1, port=5101 tcp -> 10.1.1.2  
nuttcp-t: time limit = 30.00 seconds  
nuttcp-t: connect to 10.1.1.2 with mss=8948, RTT=0.305 ms  
nuttcp-t: send window size = 524288, receive window size = 524288  
nuttcp-t: available send window = 393216, available receive window = 393216  
nuttcp-r: v7.1.6: socket  
nuttcp-r: buflen=65536, nstream=1, port=5101 tcp  
nuttcp-r: interval reporting every 1.00 second  
nuttcp-r: accept from 10.1.1.1  
nuttcp-r: send window size = 524288, receive window size = 524288  
nuttcp-r: available send window = 393216, available receive window = 393216  
 1532.6250 MB /   1.00 sec = 12856.4232 Mbps  1857 retrans  
 1598.7500 MB /   1.00 sec = 13411.1395 Mbps  1848 retrans  



NAS Technical Report: TN-2014-01 
 

 1600.8125 MB /   1.00 sec = 13428.7900 Mbps  1889 retrans  
 1630.9375 MB /   1.00 sec = 13681.0628 Mbps  1940 retrans  
 1627.6875 MB /   1.00 sec = 13653.8958 Mbps  1878 retrans  
 1633.0000 MB /   1.00 sec = 13699.0078 Mbps  1850 retrans  
 1605.8750 MB /   1.00 sec = 13471.0559 Mbps  1908 retrans  
 1628.8750 MB /   1.00 sec = 13663.5839 Mbps  1811 retrans  
 1634.3750 MB /   1.00 sec = 13710.4877 Mbps  1800 retrans  
 1663.3750 MB /   1.00 sec = 13953.3590 Mbps  1910 retrans  
 1610.0625 MB /   1.00 sec = 13506.2912 Mbps  1869 retrans  
 1608.1875 MB /   1.00 sec = 13490.1308 Mbps  1903 retrans  
 1686.0000 MB /   1.00 sec = 14142.9668 Mbps  1860 retrans  
 1636.3750 MB /   1.00 sec = 13727.4575 Mbps  1853 retrans  
 1666.3750 MB /   1.00 sec = 13978.4548 Mbps  2000 retrans  
 1675.3750 MB /   1.00 sec = 14053.7971 Mbps  1913 retrans  
 1648.2500 MB /   1.00 sec = 13826.8273 Mbps  1968 retrans  
 1659.2500 MB /   1.00 sec = 13918.7143 Mbps  1801 retrans  
 1659.2500 MB /   1.00 sec = 13918.8674 Mbps  1939 retrans  
 1643.0625 MB /   1.00 sec = 13783.0210 Mbps  1910 retrans  
 1675.0625 MB /   1.00 sec = 14051.2741 Mbps  2088 retrans  
 1643.1875 MB /   1.00 sec = 13784.1799 Mbps  1938 retrans  
 1665.0625 MB /   1.00 sec = 13967.6404 Mbps  2042 retrans  
 1634.2500 MB /   1.00 sec = 13708.8770 Mbps  2026 retrans  
 1679.3125 MB /   1.00 sec = 14087.1929 Mbps  1933 retrans  
 1682.8125 MB /   1.00 sec = 14116.1297 Mbps  2056 retrans  
 1653.0000 MB /   1.00 sec = 13866.8128 Mbps  1763 retrans  
 1646.6250 MB /   1.00 sec = 13812.6706 Mbps  1959 retrans  
 1660.3125 MB /   1.00 sec = 13927.8221 Mbps  1909 retrans  
 1660.6250 MB /   1.00 sec = 13930.4436 Mbps  1991 retrans  
nuttcp-t: 49248.7500 MB in 30.00 real seconds = 1681019.69 KB/sec = 13770.9133 Mbps  
nuttcp-t: retrans = 57412  
nuttcp-t: 787980 I/O calls, msec/call = 0.04, calls/sec = 26265.93  
nuttcp-t: 0.2user 15.5sys 0:30real 52% 0i+0d 490maxrss 0+3pf 83214+29csw  
nuttcp-r: 49248.7500 MB in 30.00 real seconds = 1681020.13 KB/sec = 13770.9169 Mbps  
nuttcp-r: 2038427 I/O calls, msec/call = 0.02, calls/sec = 67947.41  
nuttcp-r: 0.3user 14.8sys 0:30real 50% 0i+0d 346maxrss 0+21pf 1141404+21csw  
 
 
Cpu0  :  0.0%us,  0.0%sy,  0.0%ni, 98.3%id,  0.0%wa,  0.0%hi,  1.7%si,  0.0%st 
 
Cpu1  :  0.0%us, 10.2%sy,  0.0%ni, 89.5%id,  0.0%wa,  0.0%hi,  0.3%si,  0.0%st 

 

Ethernet	  Test	  2	  	  

The same test was run again, this time with both the application and interrupts set to use CPU 0. No 
packets are dropped due to lack of interrupts, and there is a smooth, lossless data exchange. 

 
# ./nuttcp -v -i1 -xc0 -xcs0 -T30 10.1.1.2 
nuttcp-t: v7.2.1: socket 
nuttcp-t: affinity = CPU 0 
nuttcp-t: buflen=65536, nstream=1, port=5101 tcp -> 10.1.1.2 
nuttcp-t: time limit = 30.00 seconds 
nuttcp-t: connect to 10.1.1.2 with mss=8960, RTT=0.235 ms 
nuttcp-t: send window size = 524288, receive window size = 524288 
nuttcp-t: available send window = 393216, available receive window = 393216 
nuttcp-r: v7.2.1: socket 
nuttcp-r: buflen=65536, nstream=1, port=5101 tcp 
nuttcp-r: interval reporting every 1.00 second 
nuttcp-r: accept from 10.1.1.1 
nuttcp-r: send window size = 524288, receive window size = 524288 
nuttcp-r: available send window = 393216, available receive window = 393216 
 2408.7500 MB /   1.00 sec = 20205.3321 Mbps     0 retrans 
 2476.6250 MB /   1.00 sec = 20775.3947 Mbps     0 retrans 



NAS Technical Report: TN-2014-01 
 

 2479.2500 MB /   1.00 sec = 20797.3940 Mbps     0 retrans 
 2491.6250 MB /   1.00 sec = 20901.7880 Mbps     0 retrans 
 2488.8750 MB /   1.00 sec = 20878.1759 Mbps     0 retrans 
 2475.1250 MB /   1.00 sec = 20762.5004 Mbps     0 retrans 
 2475.2500 MB /   1.00 sec = 20764.3588 Mbps     0 retrans 
 2479.6875 MB /   1.00 sec = 20800.8976 Mbps     0 retrans 
 2479.6250 MB /   1.00 sec = 20800.4149 Mbps     0 retrans 
 2493.5625 MB /   1.00 sec = 20918.2086 Mbps     0 retrans 
 2489.9375 MB /   1.00 sec = 20886.7128 Mbps     0 retrans 
 2494.0625 MB /   1.00 sec = 20921.8172 Mbps     0 retrans 
 2491.3125 MB /   1.00 sec = 20898.4977 Mbps     0 retrans 
 2494.0000 MB /   1.00 sec = 20921.2930 Mbps     0 retrans 
 2491.5625 MB /   1.00 sec = 20900.4485 Mbps     0 retrans 
 2480.0625 MB /   1.00 sec = 20804.3970 Mbps     0 retrans 
 2486.2500 MB /   1.00 sec = 20856.4269 Mbps     0 retrans 
 2476.0000 MB /   1.00 sec = 20769.9649 Mbps     0 retrans 
 2475.8750 MB /   1.00 sec = 20768.9579 Mbps     0 retrans 
 2473.5625 MB /   1.00 sec = 20749.8707 Mbps     0 retrans 
 2474.2500 MB /   1.00 sec = 20755.7624 Mbps     0 retrans 
 2474.6875 MB /   1.00 sec = 20759.1626 Mbps     0 retrans 
 2475.5000 MB /   1.00 sec = 20766.2898 Mbps     0 retrans 
 2484.0000 MB /   1.00 sec = 20836.4480 Mbps     0 retrans 
 2482.0000 MB /   1.00 sec = 20820.8998 Mbps     0 retrans 
 2479.3750 MB /   1.00 sec = 20798.1098 Mbps     0 retrans 
 2480.2500 MB /   1.00 sec = 20806.3860 Mbps     0 retrans 
 2479.0625 MB /   1.00 sec = 20795.4884 Mbps     0 retrans 
 2477.9375 MB /   1.00 sec = 20786.7374 Mbps     0 retrans 
nuttcp-t: 74389.9375 MB in 30.00 real seconds = 2539171.96 KB/sec = 20800.8967 Mbps 
nuttcp-t: retrans = 0 
nuttcp-t: 1190239 I/O calls, msec/call = 0.03, calls/sec = 39674.56 
nuttcp-t: 0.3user 29.5sys 0:30real 99% 0i+0d 502maxrss 0+4pf 17+77csw 
nuttcp-r: 74389.9375 MB in 30.00 real seconds = 2539182.20 KB/sec = 20800.9806 Mbps 
nuttcp-r: 1236588 I/O calls, msec/call = 0.02, calls/sec = 41219.69 
nuttcp-r: 0.5user 26.7sys 0:30real 90% 0i+0d 350maxrss 0+21pf 505948+55csw 
 
Cpu0  :  1.0%us, 46.5%sy,  0.0%ni,  0.0%id,  0.0%wa,  0.0%hi, 52.5%si,  0.0%st 
 

Appendix	  C	  –	  Tuning	  Commands	  
Commands used to tune and test the system are listed in this section. Commands must be run as the root 
user. 

NIC	  Offloading	  	  

Toggling TCP Segmentation Offloading (TSO): 
# ethtool -K eth1 tso [on/off] 

Toggling Large Receive Offload (LRO): 
# ethtool -K eth1 lro [on/off] 

Toggling Rx Checksumming (Rx): 
Note: The GRO setting is also automatically toggled with this. 
# ethtool -K eth1 rx [on/off] 

 

 

 



NAS Technical Report: TN-2014-01 
 

Toggling Tx Checksumming (Tx): 
Note: SG and TSO are automatically toggled with this. 
# ethtool -K eth1 tx [on/off] 

Toggling Generic Segmentation Offload (GRO): 
# ethtool -K eth1 gro [on/off] 

Toggling Scatter-Gather (SG): 
Note: TSO is automatically toggled with this. 
# ethtool -K eth1 sg [on/off] 

If you get an "Operation not supported" error when you run one of the above commands, you may need 
to enable the dependent setting and try the command again. Also, be aware that some drivers do not 
support these settings, so refer to your vendor documentation for support information. You can validate 
your changes by running ethtool -k eth1. 

Kernel	  Tuning	  Commands	  

Changes to kernel-level settings are done through the sysctl command. The settings are applied 
immediately.   

# sysctl -w net.ipv4.tcp_low_latency=1 
# sysctl -w net.ipv4.tcp_timestamps=0 
# sysctl -w net.ipv4.tcp_sack=0 
# sysctl -w net.core.netdev_max_backlog=30000 

CPU	  Affinity	  	  

You can set which IRQ is bound to a specific processor: 
# echo 01 > /proc/irq/76/smp_affinity 

In addition, you can define which process ID (PID) is affiliated with each process: 
# taskset -p 01 1334 

DMA	  Buffers 

DMA Ring buffers are also set with the ethtool utility. You can set RX, RX mini, RX jumbo, or TX: 
# ethtool -G eth1 fx 1024 

NIC	  Coalescing	  

Adaptive settings are preferred for coalesce buffers, but not all network cards support this newer 
technology: 
# ethtool -C eth1 adaptive-rx on 

Process	  Priority	  

If there is competition with other applications running, it may be useful to increase the process priority 
of the application needing more network resources: 
# nice -n 2 nuttcp 

 



NAS Technical Report: TN-2014-01 
 

Interface	  Tx/Rx	  Queue	  

Larger transmit queues are needed for high-speed networks. The size of the queue will vary depending 
on end-to-end latency. 
Tx: # ifconfig eth0 txqueuelen 10000 
Rx: # sysctl -w  net.core.netdev_max_backlog=30000 

Pause	  Frames	  

Pause frames help reduce congestion and packet loss. Set this to auto-negotiation for both transmitting 
and receiving: 
# ethtool -A eth1 augoneg on 

 

 
 

 
 


